
watcher
Release 0.2.0

Raciel Hernandez B.

May 25, 2021

FIRST STEPS

1 First steps 3
1.1 Prerequisites . 3
1.2 Quick Instalation . 4
1.3 Watcher features . 5

2 Getting started with Watcher 17

3 Step-by-step Guides 19

4 Advanced features of Watcher 21

5 Watcher project and organization 23

i

ii

watcher, Release 0.2.0

Watcher simplifies the integration of non-connected systems by detecting changes in data and facilitates the devel-
opment of monitoring, security and process automation applications. Think of Watcher as an intercom or a bridge
between different servers or between different applications on the same server. Or you can simply take advantage of
Watcher’s capabilities to develop your project.

“Watch everything” Currently the functionality of detecting changes in the file system is implemented. However, the
project has a larger scope and we invite you to collaborate with us to achieve the goal of “Watch Everything”.
One step at a time! Come on and join us.

Starting with the file system Yes, we have started implementing watcher to observe and detect changes in the file
system. You can use watcher to discover changes related to file creation, file deletion and file alteration. You can
find out more about our all the Watcher features in these pages.

Watcher is Free, Open Source and User Focused Our code is free and open source. We like open source but we
like socially responsible software even more. Watcher is distributed under MIT license.

FIRST STEPS 1

https://watcher.readthedocs.io/en/latest/
https://github.com/racherb/watcher

watcher, Release 0.2.0

2 FIRST STEPS

CHAPTER

ONE

FIRST STEPS

Your project needs to process inputs that trigger your business logic but those inputs are out of your control? Do you
want to integrate your project based on detection of file system changes? Learn about the great options Watcher offers
for advanced change detection that you can leverage for your project development.

• Getting started: Installation Prerequisites | Quick Installation | With Http Watcher | Feature Overview |
/choosing-a-site

• Integrating your existing proyect: Integration guide

1.1 Prerequisites

If you like containers we have one ready in DocketHub (watcher) but if you want to install Watcher you should consider
the following requirements:

1.1.1 Tarantool

Watcher runs on Tarantool. Tarantool is an In-memory computing platform. For installation follow the instructions
on the tarantool.io website.

Before you begin, ensure you have met the following requirements:

• Tarantool: >= 1.7.

Note: If you already have Tarantool installed you can skip this step.

1.1.2 Supported Platforms

• POSIX Compliant: Unix, MacOsx, Linux, Freebsd.

• POSIX for Windows: Cygwin, Microsoft POSIX Subsystem, Windows Services for UNIX, MKS
Toolkit.

Warning: Watcher has not been tested on POSIX Windows Systems.

3

https://hub.docker.com/r/racherb/watcher
https://www.tarantool.io/en/download/os-installation/

watcher, Release 0.2.0

1.2 Quick Instalation

There are several ways to install Watcher on your server. Choose the option that suits you best and go ahead!

1.2.1 From Docker

Get Watcher container from a docker image:

1 docker pull racherb/watcher:latest
2 docker run -i -t racherb/watcher

Note: Use docker volumes. If you want to look at the host or remote machine’s file system then start a container with
a volume.

The following example enables a volume on the temporary folder /tmp of the host at path /opt/watcher/host/ of
the container.

docker run -i -t -v /tmp/:/opt/watcher/host/tmp racherb/watcher

1.2.2 From DEB Package

Quick installation from DEB Package:

1 curl -s https://packagecloud.io/install/repositories/iamio/watcher/script.deb.sh | sudo␣
→˓bash

2 sudo apt-get install watcher=0.2.1-1

Note: DEB Quick install is available for the following distributions:

• Debian: Lenny, Trixie, Bookworm, Bullseye, Buster, Stretch, Jessie.

• Ubuntu: Cosmic, Disco, Hirsute, Groovy, Focal.

• ElementaryOS: Freya, Loki, Juno, Hera.

1.2.3 From RPM Package

First install the repository:

curl -s https://packagecloud.io/install/repositories/iamio/watcher/script.rpm.sh | sudo␣
→˓bash

And install the package:

• For RHEL and Fedora distros: sudo yum install watcher-0.2.1-1.noarch.

• For Opensuse and Suse Linux Enterprise: sudo zypper install watcher-0.2.1-1.noarch.

Note: RPM Quick install is available for the following distributions:

• RHEL: 7, 6, 8.

4 Chapter 1. First steps

watcher, Release 0.2.0

• Fedora: 29, 30, 31, 32, 33.

• OpenSuse: 15.1, 15.2, 15.3, 42.1, 42.2, 42.3.

• Suse Linux Enterprise: 12.4, 12.5, 15.0, 15.1, 15.2, 15.3.

1.2.4 From Tarantool

Quick installation from Utility Tarantool:

Install watcher through Tarantool’s tarantoolctl command:

1 tarantoolctl rocks install avro-schema
2 tarantoolctl rocks install https://raw.githubusercontent.com/racherb/watcher/master/

→˓watcher-scm-1.rockspec

1.2.5 From LuaRocks

Make sure you have Luarocks installed first.

From the terminal run the following command:

luarocks install https://raw.githubusercontent.com/racherb/watcher/master/watcher-scm-1.
→˓rockspec

1.3 Watcher features

The Watcher module has been designed with the typical use cases of the Banking and Telecommunications industry
in mind for IT Batch Processing.

If you know of a use case that is not covered by watcher, please tell us about it in the GitHub Discussions Section .

Currently Watcher comprises the following features: Single File & Folders, Multiples File Groups, File Patterns,
Non-Bloking Execution, Blocking Execution, Bulk File Processing, Advanced File Deletion, Advanced File Creation,
Advanced File Alteration, Watcher for Any Alteration, Watcher for Specific Alteration, Decoupled Execution, Nov-
elty Detection, Qualitative Response, Check File Stability, Big Amounts of Files, Atomic Function Injection, Folder
Recursion, Selective Path Level, Watcher Monitoring

Note: The lines of code used to exemplify each feature of watcher assume the following:

1 fwa = require('watcher').file --for file-watcher
2 mon = require('watcher').monit --for watcher monitoring

1.3. Watcher features 5

https://github.com/racherb/watcher/discussions/categories/ideas/

watcher, Release 0.2.0

1.3.1 Single File & Folders

Detection of creation, deletion and alteration of single files or single folders in the file system.

1 fwa.creation({'/path/to/single_file'}) --watching file creation
2 fwa.creation({'/path/to/single_folder/'}) --watching folder creation

1.3.2 Multiples File Groups

Multiple groups of different files can be watched at the same time. The input list of watchable files is a Lua table type
parameter.

1 fwa.deletion(
2 {
3 '/path_1/to/group_file_a/*', --folder
4 '/path_2/to/group_file_b/*' --another
5 }
6)

1.3.3 File Patterns

fwa.creation({'/path/to/files_*.txt'})

Note: The watch-list is constructed with a single flag that controls the behavior of the function: GLOB_NOESCAPE.
For details type man 3 glob.

1.3.4 Non-Bloking Execution

By default the Watcher run is executed in non-blocking mode through tarantool fibers. Fibers are a unique Tarantool
feature “green threads” or coroutines that run independently of operating system threads.

1.3.5 Blocking Execution

The waitfor function blocks the code and waits for a watcher to finish.

waitfor(fwa.creation({'/path/to/file'}).wid) --wait for watcher

1.3.6 Bulk File Processing

Watcher has an internal mechanism to allocate fibers for every certain amount of files in the watcher list. This amount
is determined by the BULK_CAPACITY configuration value in order to optimize performance.

6 Chapter 1. First steps

watcher, Release 0.2.0

1.3.7 Advanced File Deletion

Inputs

Table 1: File Watcher Deletion Parameters
Param Type Description
wlist table, required Watch List
maxwait number, otional,

default-value: 60
Maximum wait time in seconds

interval number, otional,
default-value: 0.5

Verification interval for watcher in seconds

options table, optional,
default-value:
{'NS', 0, 0}

List of search options

recursion table, optional,
default-value: nil
or {false, {0},
false}

Recursion paramaters

wlist

It is the list of files, directories or file patterns to be observed. The data type is a Lua table and the size of tables is
already limited to 2.147.483.647 elements.

An example definition is the following:

wlist = {'path/file', 'path', 'pattern*', ...} --arbitrary code

maxwait

Maxwait is a numeric value that represents the maximum time to wait for the watcher. Watcher will terminate as soon
as possible and as long as the search conditions are met. The default value is 60 seconds.

interval

Interval is a numerical value that determines how often the watcher checks the search conditions. This value must be
less than the maxwait value. The default value is 0.5 seconds.

options

The options parameter is a Lua table containing 3 elements: sort, cases and match.

• The first one sort contains the ordering method of the wlist.

• The second element cases contains the number of cases to observe from the wlist.

• and the third element match indicates the number of cases expected to satisfy the search.

By default, the value of the option table is {sort = 'NS', cases = 0, match = 0}.

1.3. Watcher features 7

watcher, Release 0.2.0

Table 2: The list of possible values for sort
Value Description
'NS' No sort
'AA' Sorted alphabetically ascending
'AD' Sorted alphabetically descending
'MA' Sorted by date of modification ascending
'MD' Sorted for date of modification descending

Note: The value 'NS' treats the list in the same order in which the elements are passed to the list wlist.

recursion

To enable directory recursion you must define the recursion parameter. The recursion works only for an observable of
type directory.

The recursion value is a Lua table type composed of the following elements {recursive_mode, {deep_levels},
hidden_files}:

• recursive_mode: Boolean indicating whether or not to activate the recursive mode on the root directory. The
default value is false.

• deep_levels: Numerical table indicating the levels of depth to be evaluated in the directory structure. The default
value is {0}

• hidden_files: Boolean indicating whether hidden files will be evaluated in the recursion. The default value is
false.

How do the recursion levels work?

To understand how levels work in recursion, let’s look at the following example.

Imagine you have the following directory structure and you want to observe the deletion of files from the path
‘/folder_A/folder_B/’.

8 Chapter 1. First steps

watcher, Release 0.2.0

The levels are determined from the object path or root path that will be used as input in the watcher expression. In
this case the path ‘/folder_A/folder_B/’ has level zero and, for each folder node a level will be added according to its
depth. The result is shown in the following summary table, which contains the list of files for each level.

Table 3: Identification of the levels of recursion
[Input] Level 0 {0} Level 1 {1} Level 2 {2} Level 3 {3} Level 4 {4}

folder '/folder_A/folder_B/' 'folder_C' 'folder_D' 'folder_E' 'folder_N'
files {A1} {B1, B2, .B3} {C1, C2} {.D1} {E1, E2,

.E3}
{N1, N2}

Note: The files, .B3, .D1 and .E3 are hidden files.

Now that we know how to set the recursion level, let’s see an example of the observable files depending on different
values of the recursion parameter for the above mentioned example.

Table 4: Observable files depending on the recursion level
recursion value Composition of the list of observable files wlist
{true, {0}, false} {A1, B1, B2}
{true, {0}, true} {A1, B1, B2, .B3}
{true, {0, 1}, false} {A1, B1, B2, C1, C2}
{true, {0, 1}, true} {A1, B1, B2, .B3, C1, C2}
{true, {2}, false} nil
{true, {2}, true} {.D1}
{true, {0, 1, 2, 3, 4}, false} {A1, B1, B2, C1, C2, E1, E2, N1, N2}
{true, {0, 1, 2, 3, 4}, true} {A1, B1, B2, .B3, C1, C2, .D1, E1, E2,

.E3, N1, N2}

1.3. Watcher features 9

watcher, Release 0.2.0

Output

1.3.8 Advanced File Creation

Inputs

Table 5: File Watcher Creation Parameters
Param Type Description
wlist table, required Watch List
maxwait number, otional,

default-value: 60
Maximum wait time in seconds

interval number, otional,
default-value: 0.5

Verification interval for watcher in seconds

minsize number, optional,
default-value: 0

Value of the minimum expected file size

stability table, optional,
default-value: {1,
15}

Minimum criteria for measuring file stability

novelty table, optional,
default-value: {0,
0}

Time interval that determines the validity of the file’s
novelty

nmatch number, optional,
default-value: 0

Number of expected files as a search sufficiency condi-
tion

wlist

It is the list of files, directories or file patterns to be observed. The data type is a Lua table and the size of tables is
already limited to 2.147.483.647 elements.

An example definition is the following:

wlist = {'path/file', 'path', 'pattern*', ...} --arbitrary code

maxwait

Maxwait is a numeric value that represents the maximum time to wait for the watcher. Watcher will terminate as soon
as possible and as long as the search conditions are met. The default value is 60 seconds.

interval

Interval is a numerical value that determines how often the watcher checks the search conditions. This value must be
less than the maxwait value. The default value is 0.5 seconds.

10 Chapter 1. First steps

watcher, Release 0.2.0

minsize

Minsize is a numerical value representing the minimum expected file size. The default value is 0, which means that it
is sufficient to just generate the file when the minimum size is unknown.

Important: Regardless of whether the expected file size is 0 Bytes, watcher will not terminate until the file arrives
in its entirety, avoiding edge cases where a file is consumed before the data transfer is complete.

stability

The stability parameter contains the elements that allow to evaluate the stability of a file. It is a Lua table containing
two elements:

• The interval that defines the frequency of checking the file once it has arrived.

• The number of iterations used to determine the stability of the file.

The default value is: {1, 15}.

novelty

The novelty parameter is a two-element Lua table that contains the time interval that determines the validity of the
file’s novelty. The default value is {0, 0} which indicates that the novelty of the file will not be evaluated.

nmatch

nmatch is a number of expected files as a search sufficiency condition.

1.3.9 Advanced File Alteration

Inputs

Table 6: File Watcher Alteration Parameters
Param Type Description
wlist table, required Watch List
maxwait numeric, otional,

default-value: 60
Maximum wait time in seconds

interval numeric, otional,
default-value: 0.5

Verification interval for watcher in seconds

awhat string, optional,
default-value: '1'

Type of file alteration to be observed

nmatch number, optional,
default-value: 0

Number of expected files as a search sufficiency condi-
tion

1.3. Watcher features 11

watcher, Release 0.2.0

wlist

It is the list of files, directories or file patterns to be observed. The data type is a Lua table and the size of tables is
already limited to 2.147.483.647 elements.

An example definition is the following:

wlist = {'path/file', 'path', 'pattern*', ...} --arbitrary code

maxwait

Maxwait is a numeric value that represents the maximum time to wait for the watcher. Watcher will terminate as soon
as possible and as long as the search conditions are met. The default value is 60 seconds.

interval

Interval is a numerical value that determines how often the watcher checks the search conditions. This value must be
less than the maxwait value. The default value is 0.5 seconds.

awhat

Type of file alteration to be observed. See File Watcher Alteration Parameters.

Table 7: File Watcher Alteration Parameters
Type Value Description
ANY_ALTERATION '1' Search for any alteration
CONTENT_ALTERATION '2' Search for content file alteration
SIZE_ALTERATION '3' Search for file size alteration
CHANGE_TIME_ALTERATION '4' Search for file ctime alteration
MODIFICATION_TIME_ALTERATION'5' Search for file mtime alteration
INODE_ALTERATION '6' Search for file inode alteration
OWNER_ALTERATION '7' Search for file owner alteration
GROUP_ALTERATION '8' Search for file group alteration

nmatch

nmatch is a number of expected files as a search sufficiency condition.

1.3.10 Watcher for Any Alteration

fwa.alteration({'/path/to/file'}, nil, nil, '1')

12 Chapter 1. First steps

watcher, Release 0.2.0

1.3.11 Watcher for Specific Alteration

1 fwa.alteration({'/path/to/file'}, nil, nil, '2') --Watcher for content file alteration
2 fwa.alteration({'/path/to/file'}, nil, nil, '3') --Watcher for content file size␣

→˓alteration
3 fwa.alteration({'/path/to/file'}, nil, nil, '4') --Watcher for content file ctime␣

→˓alteration
4 --explore other options for 'awhat' values

See table File Watcher Alteration Parameters for more options.

1.3.12 Decoupled Execution

The create, run function and the monit options have been decoupled for better behavior, overhead relief and versa-
tility of use.

1.3.13 Novelty Detection

Watcher implements the detection of the newness of a file based on the mtime modification date. This is useful to
know if file system items have been created in an expected time window.

Warning: Note that the creation of the files may have been done preserving the attributes of the original file. In
that case you should consider the novelty rank accordingly.

1 date_from = os.time() - 24*60*60 --One day before the current date
2 date_to = os.time() + 24*60*60 --One day after the current date
3 os.execute('touch /tmp/novelty_file.txt') --The file is created on the current date
4 fwt.creation({'/tmp/novelty_file.txt'}, 10, nil, 0, nil, {date_from, date_to})

Note:

For known dates you can use the Lua function os.time() as follows:

1 date_from = os.time(
2 {
3 year = 2020,
4 month = 6,
5 day = 4,
6 hour = 23,
7 min = 48,
8 sec = 10
9 }

10)

1.3. Watcher features 13

watcher, Release 0.2.0

1.3.14 Qualitative Response

Watcher leaves a record for each watchable file where it provides qualitative nformation about the search result for each
of them. To explore this information see the Watcher Monitoring match and nomatch functions.

1 NOT_YET_CREATED = '_' --The file has not yet been created
2 FILE_PATTERN = 'P' --This is a file pattern
3 HAS_BEEN_CREATED = 'C' --The file has been created
4 IS_NOT_NOVELTY = 'N' --The file is not an expected novelty
5 UNSTABLE_SIZE = 'U' --The file has an unstable file size
6 UNEXPECTED_SIZE = 'S' --The file size is unexpected
7 DISAPPEARED_UNEXPECTEDLY = 'D' --The file has disappeared unexpectedly
8 DELETED = 'X' --The file has been deleted
9 NOT_EXISTS = 'T' --The file does not exist

10 NOT_YET_DELETED = 'E' --The file has not been deleted yet
11 NO_ALTERATION = '0' --The file has not been modified
12 ANY_ALTERATION = '1' --The file has been modified
13 CONTENT_ALTERATION = '2' --The content of the file has been altered
14 SIZE_ALTERATION = '3' --The file size has been altered
15 CHANGE_TIME_ALTERATION = '4' --The ctime of the file has been altered
16 MODIFICATION_TIME_ALTERATION = '5' --The mtime of the file has been altered
17 INODE_ALTERATION = '6' --The number of inodes has been altered
18 OWNER_ALTERATION = '7' --The owner of the file has changed
19 GROUP_ALTERATION = '8' --The group of the file has changed

1.3.15 Check File Stability

Enabled only for file creation. This feature ensures that the watcher terminates once the file creation is completely
finished. This criterion is independent of the file size.

See usage for parameter stability

1.3.16 Big Amounts of Files

In the following example, watching the file deletion from the path “/” recursively down to depth level 3 (levels={0,
1,2,3}) yields a total of 163,170 watchable files. Note that the execution takes 85 seconds (on a typical desktop
machine) but the maximum timeout of the watcher has been specified as low as 10 seconds. This means that 88% of
the time is consumed in creating the watcher due to recursion.

1 tarantool> test=function() local ini=os.time() local fwa=fw.deletion({'/'},␣
→˓10, nil, {'NS', nil, 2}, {true, {0,1,2,3}, false}) print(os.time()-ini)␣
→˓print(fwa.wid) end

2 tarantool> test()
3 85
4 1620701962375155ULL
5 ---
6 tarantool> mon.info(1620701962375155ULL)
7 ---
8 - ans: true
9 match: 72

10 what: '{"/"}'
11 wid: 1620701962375155

(continues on next page)

14 Chapter 1. First steps

watcher, Release 0.2.0

(continued from previous page)

12 type: FWD
13 nomatch: 163098
14 status: completed
15 ...

1.3.17 Atomic Function Injection

Atomic function injection allows you to perform specific tasks on each element of the watchable list separately. In the
example, the atomic function afu creates a backup copy for each element of the watchlist.

1 afu = function(file) os.execute('cp '..file..' '..file..'_backup') end --Atomic Funcion
2 cor = require('watcher').core
3 wat = cor.create({'/tmp/original.txt'}, 'FWD', afu) --afu is passed as parameter
4 res = run_watcher(wat)

1.3.18 Folder Recursion

You can enable recursion on directories to detect changes in the file system. Recursion is enabled based on a directory
entry as a parameter that is considered as a root directory. Starting from this root directory, considered as level zero,
you can selectively activate the observation of successive directory levels.

1 fwa.deletion(
2 {'/tmp/folder_1'}, --Observed directory is considered a zero level root directory
3 nil, --Maxwait, nil to take the value by omission
4 nil, --Interval, nil to take the value by omission
5 nil, --Options, nil to take the value by omission
6 {
7 true, --Activate recursion
8 {0, 1, 2}, --Levels of directories to be observed (root and levels 1 & 2)
9 false --Includes hidden files

10 }
11)

For more info see How do the recursion levels work?.

1.3.19 Selective Path Level

The recursion levels is a list of numerical values so you can specify (selectively) the directory level you want to observe
and ignore others. This is useful in situations where the full path to the file is unknown but the depth or level of the file
is known.

1 fwa.deletion(
2 {'/bac/invoices'},
3 nil,
4 nil,
5 nil,
6 {
7 true, --Activate recursion
8 {3}, --Selective level 3

(continues on next page)

1.3. Watcher features 15

watcher, Release 0.2.0

(continued from previous page)

9 false --Includes hidden files
10 }
11)

See use case . . .

1.3.20 Watcher Monitoring

monit for Watcher monitoring allows you to monitor and explore the running status of a watcher.

info

The output is a Lua table containing the following elements:

• ans is a boolean value containing the response of the watcher. true means that the watcher has detected the
expected changes that are defined in the parameters.

• match is the number of cases that match the true value of ans.

• nomatch is the number of cases that do not belong to the set of true ans.

• what is a string containing the obserbables parameter.

• wid is the unique identifier of the watcher.

• type is the type of the watcher

• status is the execution status of the watcher.

1 mon.info(1620701962375155ULL)
2

3 {
4 ans: true
5 match: 72
6 what: '{"/"}'
7 wid: 1620701962375155
8 type: 'FWD'
9 nomatch: 163098

10 status: 'completed'
11 }

match

nomatch

16 Chapter 1. First steps

CHAPTER

TWO

GETTING STARTED WITH WATCHER

Learn more about configuring your automated documentation builds and some of the core features of Watcher.

• Overview of core features: Incoming webhooks | /custom_domains | /versions | /downloadable-documentation
| /hosting | /server-side-search | /analytics /pull-requests

• Connecting with GitHub, BitBucket, or GitLab: Connecting your VCS account | VCS webhooks

• Watcher build process: Configuration reference | Build process | /badges |

• Troubleshooting: /support | Frequently asked questions

17

watcher, Release 0.2.0

18 Chapter 2. Getting started with Watcher

CHAPTER

THREE

STEP-BY-STEP GUIDES

These guides will help walk you through specific use cases related to Watcher itself.

• /guides/tools

• /guides/platform

• /guides/commercial

19

watcher, Release 0.2.0

20 Chapter 3. Step-by-step Guides

CHAPTER

FOUR

ADVANCED FEATURES OF WATCHER

Watcher offers many advanced features and options. Learn more about these integrations and how you can get the most
out of Watcher.

• Advanced project configuration: subprojects | Single version docs

• Multi-language documentation: Translations and localization

• Redirects: User defined redirects | Automatic redirects

• Versions Automation rules

• Topic specific guides: How-to guides

• Extending Watcher: REST API

21

watcher, Release 0.2.0

22 Chapter 4. Advanced features of Watcher

CHAPTER

FIVE

WATCHER PROJECT AND ORGANIZATION

Learn about Watcher, the project, and find out how you can get involved and contribute to the development and success
of Watcher and the larger software documentation ecosystem.

• Getting involved with Watcher: Contributing | Development installation | roadmap | Code of conduct

• Policies & Process: security | Privacy policy | Terms of service | DMCA takedown policy | Policy for abandoned
projects | Release notes & changelog

• The people and philosophy behind Watcher: About Us | Team | Open source philosophy | Our story

• Financial and material support: advertising/index | Sponsors

• Watcher for Business: Support and additional features

23

	First steps
	Prerequisites
	Tarantool
	Supported Platforms

	Quick Instalation
	From Docker
	From DEB Package
	From RPM Package
	From Tarantool
	From LuaRocks

	Watcher features
	Single File & Folders
	Multiples File Groups
	File Patterns
	Non-Bloking Execution
	Blocking Execution
	Bulk File Processing
	Advanced File Deletion
	Inputs
	wlist
	maxwait
	interval
	options
	recursion
	How do the recursion levels work?
	Output

	Advanced File Creation
	Inputs
	wlist
	maxwait
	interval
	minsize
	stability
	novelty
	nmatch

	Advanced File Alteration
	Inputs
	wlist
	maxwait
	interval
	awhat
	nmatch

	Watcher for Any Alteration
	Watcher for Specific Alteration
	Decoupled Execution
	Novelty Detection
	Qualitative Response
	Check File Stability
	Big Amounts of Files
	Atomic Function Injection
	Folder Recursion
	Selective Path Level
	Watcher Monitoring
	info
	match
	nomatch

	Getting started with Watcher
	Step-by-step Guides
	Advanced features of Watcher
	Watcher project and organization

